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ABSTRACT 

A new  solution  method  is  presented  for  steady-state,  momentum-conserving, 
non-axisymmetric  bow  shocks  and  colliding  winds  in  the  thin-shell  limit.  This  is a 
generalization of previous  formulations to include a density  gradient in the pre-shock 
ambient  medium, as well as anisotropy  in  the  pre-shock  wind. For cases where  the 
wind  is  unaccelerated,  the  formalism  yields  exact,  analytic  solutions. 

Solutions  are  presented  for  two  bow  shock cases: (1) tha t   due  to  a s tar  moving 
supersonically  with  respect to  an  ambient  medium  with a density  gradient  perpendicular 
to  the  stellar velocity, and  (2)  that  due to  a star  with a misaligned,  axisymmetric  wind 
moving  in a uniform  medium.  It  is also shown  under  quite  general  circumstances  that 
the total rate of energy  therma,lization  in  the  bow  shock  is  independent of the  details 
of the  wind  asymmetry,  including  the  orientation of the  non-axisymmetric  driving 
wind,  provided  the  wind  is  non-accelerating  and  point-symmetric. A typical  feature of 
the  solutions is tha t   the  region  near  the  standoff  point  is  tilted, so that   the  star  does 
not lie along  the  bisector of a parabolic fit to the  standoff  region.  The  principal  use of 
this  work is to infer the origin of bow  shock  asymmetries,  whether  due to the wind or 
ambient  medium, or both. 

Subject headings: hydrodynamics - ISM:  bubbles - ISM: HI1 regions-shock waves 
"stars:  mass  loss 

1. Introduction 

Supersonic  stellar  winds  shock  the  surrounding  gas  and  drive  expanding  bubbles  into  the 
interstellar  medium.  These  shocks  provide  an  opportunity to probe  the  properties of both  the 
driving  stellar  wind  and  the  ambient  medium. If the  star  is  moving  with  respect to the  interstellar 
gas,  the  bubble will be distorted  into a cometary  shape.  When  the  stellar  motion is supersonic, 
we  refer to  these as stellar  wind  bow  shocks  (Baranov,  Krasnobaev & Kulikovskii  1971;  Dyson 
1975).  Since  the  discovery of such  bow  shocks  around  young B stars  (Van  Buren & McCray  1988), 
bow  shocks  have  been  found  associated  with  many  classes of objects, such as pulsars  (Kulkarni 
et  al.  1992)  and  cataclysmic  variables  (e.g. Vela X-1: Kaper et al.  1997);  examples  include 
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well-known  naked-eye s tars  (e.g.  Betelgeuse:  Noriega-Crespo et  al. 1997).  Bow  shocks  have  been 
proposed as  an  explanation  for  cometary,  ultracompact HI1 regions  (Van  Buren et al. 1990;  Mac 
Low et  al.  1991)  and as a means of explaining  the  lifetimes of ultracompact HI1  regions. In a 
recent  survey of t he  IRAS  database  using  HiRes  processing,  Van  Buren,  Noriega-Crespo, & Dgani 
(1995)  found  58  candidate  bow  shocks. 

Non-axisymmetric  stellar  wind  bow  shocks  occur  when a star  with  an  anisotropic wind  moves 
supersonically  with  respect to  the local medium, or if the  star  has  an  isotropic  wind  but  moves in 
an  ambient  medium  containing a transverse  density  gradient.  Models of non-axisymmetric  bow 
shocks  are  relevant to  cometary  ultracompact HI1 regions  due t o  wind-blowing 0 stars  moving 
supersonically  with  respect to  the  surrounding  molecular  cloud,  when  the  ambient  material 
does  not  have a constant  density. A non-axisymmetric  bow  shock  has also been  invoked to 
explain  the  morphology of Kepler’s  supernova  remnant,  where  the  supernova  ejecta collide with 
a non-axisymmetric  bow  shock  generated  by  the  pre-supernova  wind  (Bandiera  1987;  Borkowski, 
Blondin & Sarazin  1992).  Another  example is the bow  shock  due to the  head of a jet  propagating 
into a region  with a density  gradient.  Non-axisymmetric,  ram-pressure  balance  models of the  
collision between  a  stellar  wind  and  the  photoeva.porating flow from  an  externally  illuminated 
circumstellar  disk  have  been  given by Henney et al. (1996). A formulation  for  steady-state 
non-axisymmetric  bow  shocks  and colliding winds  was  given  by  Bandiera  (1993).  However, 
Bandiera’s  numerical  method is sufficiently  complicated tha t  a simpler,  analytic  method is 
desirable. 

In th i s  contribution, I present  a  method  for  solving  the  problem of steady-state,  momentum- 
conserving,  non-axisymmetric,  thin-shell  bow  shocks  and  colliding  winds. This is an  extension of 
the  previous  analytic  solution  method of Wilkin  (1996,  hereafter  Paper I) and of Cant6,  Raga, & 
Wilkin  (1996,  hereafter  Paper 11) to  non-axisymmetric  problems (see also  Wilkin  1997a). 

An outline of the  paper is as follows. In S 2,  we formulate  the  problem of the  steady-state 
collision of two  winds,  and in 3 we treat  the  problem of a bow  shock  resulting  from  an  isotropic 
wind interacting  with a plane-parallel flow containing a transverse  density  gradient. In 4, we 
allow  for  non-isotropic  winds,  especially  an  axisymmetric  wind  with  random  orientation of the  
symmetry  axis  with  respect to  the  direction of stellar  motion. The rate at which  kinetic  energy is 
thermalized  for  the  bow  shock is treated in 5 5. Results  and  future  directions of this  research  are 
summarized in fj 6. 

2. Mathematical  Formulation  and  Solution  Method 

2.1. Description  of the Collision Surface 

The  hypersonic collision of two  winds will in general  result in a  system of two  shocks.  A 
specific example,  that of a  stellar  wind  bow  shock, is shown  schematically in Figure 1. Because  this 
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paper is  concerned  with  steady-state  solutions,  the  colliding  winds  are  assumed to be unchanging 
in time.  The  stellar  wind  bow  shock  arises  when a wind-blowing star  moves  supersonically  with 
respect to the  intersellar  gas.  In  this case, we formulate  the  problem  in  the  reference  frame of 
the  star,  so the  ambient  medium is described as a wind of parallel  streamlines  impinging  on  the 
bow  shock. For the collision of two  winds in a, binary  star, we will neglect  orbital  motion  in  order 
to  consider a steady-state  problem in an  inertial  reference  frame.  In  steady-state,  the  amount of 
mass  and  momentum  within a given  volume  does  not  increase,  and a flow pattern  exists  between 
the  two  shocks  that  carries  away  the  mass  and  momentum  deposited  by  the colliding  winds. If 
the  shocks  are  radiative,  post-shock  cooling  lowers  the  temperature of the  gas  and  leads to  a 

large  compression.  We  make  the  strong  thin-shell  assumption  that  cooling is so efficient tha t  
the  shocked  shell  collapses to an infinitesimally  thin  layer,  with a finite  surface  density 0 of 
matter. For this  thin-shell  assumption to apply,  it is also necessary tha t   t he  post-shock  ga,s  not  be 
supported  by  magnetic  fields,  which, if well-coupled to   the  gas ,  could  maintain a finite  thickness 
even  in the  presence of efficient cooling. We assume  there  are  no  other  forces  such as those  due to 
radiation or magnetic  fields.  The  two  shocked  winds  may  in  principle  be  separated  by a contact 
discontinuity.  However,  there  would  then  be  supersonic  shear  across  the  interface  that  is  expected 
to  be  unstable,  leading t o  a mixing of the  two fluids. A detailed  treatment of the  mixing is  beyond 
the  scope of this  work.  Instead,  the  mixing is  assumed to  be instantaneous, so the  shell will 
have a, unique  velocity Vt at any  location  within  it.  This  velocity  represents  an  average of the 
turbulent  fluctuations  that would  be  present  in a more  detailed  treatment. In steady-state,  the 
geometric  shape of the shell  is  unchanging  in  time, so the  velocity of matter  within  the infinitely 
thin  layer  must  be  purely  tangent to the  shell. There will, however,  be  acceleration  normal to 
the  shell,  because  the fluid typically  does  not follow a straight  path.  The  assumption  that  the 
incident  streams  are  hypersonic,  combined  with  the  perfect  cooling  assumption,  means  that  the 
flow within  the  shell will also be hypersonic,  and  pressure  forces  may be neglected  in  describing 
the  motions  along  the shell.' Defining a spherical  coordinate  system ( r ,  6, q5), and  denoting  the 
radius of the  surface  by T = R(0, +), a complete  description of this  idealized  shell is given  by 
specifying the  quantities R,  (T, Vt as a function of position (e ,  4)  within  the  shell.  There  are in 
fact  only  four  independent  quantities, because the  condition  that  the  motion  within  the shell  be 
tangential  implies  that  one need  only  solve  for  two  velocity  components. 

'Clearly this  assumption must. break down for real, finite temperature  systems  near  the  stagnation point., because 
the  tangential flow velocity in the shell vanishes at  that.  point. However, pressure forces depend upon the gradient 
of t,he pressure, which also vanishes at,  the  st,agnation  point, so t,he  pressure forces may still be small compared to 
momentum deposition  in the st,agnat,ion region (Wilkin 199713). In any case, beyond a small region near  the  stagnation 
point, t,he tangential flow in the shell will be  supersonic, provided the incident flows are supersonic and  the shocked 
fluid cools efficiently. 
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2.2.  Previous  Treatment of the  Problem 

The  conservation  laws of mass  and  momentum  may be used to  derive  the  properties of the 
shell  in  terms of those of the  two  incident  winds.  Since  the  momentum  conservation  law  has  three 
components,  there will be  four  equations in four  unknowns,  or  including  the  condition of zero 
normal  velocity, five equations  in  five  unknowns.  Because the  assumption of vanishing  thickness 
eliminates  one  spatial  variable,  these  equations will be  partial  differential  equations  (PDEs) in 
two  spatial  coordinates.  Suitable  boundary  conditions  must also be  specified.  In  practice,  this 
means  identifying  the  stagnation (or standoff)  point,  where  the  two  winds collide  head-on,  and 
where for steady-state,  the  ram  pressures of the  two fluids  balance.  The  equations  may  then  be 
integrated  away  from  the  standoff  point, following the  motion of a fluid  element. In order to  begin 
the  numerica,l integrations,  one  generally  finds  that  an  expansion  about  the  conditions at the 
stagnation  point  is  needed. 

This  approach  was  taken  by  Bandiera (1993), who  derived a set of PDEs in  curvilinear 
coordinates  matched to  the  shape of the  shell. These  equations  were  then solved  under the  
assumption of radial,  constant velocity,  isotropic  winds  from two  point  sources.  The  moving  stellar 
wind  bow  shock  problem  is  formally  obtained  by  taking  the  limit of one  source placed  infinitely 
far  away, while  allowing its  mass  loss  rate to  be infinite so as to produce a finite  density  near  the 
other  star (at the bow  shock). 

Bandiera  noted  tha,t  for  the specific  problems  cited,  the  motion  within  the  shell  would  be 
along  planes.  One  may  readily see this  for  the  bow  shock  shown in Figure 1. Consider a point 
on  the  bow  shock  surface,  and  the  plane of constant  azimutha,l  angle  containing  it  and  the  stellar 
trajectory.  The  radial  wind  striking  the shell at this  point  has  momentum  lying in this  plane. 
Similarly, the  ambient  medium  striking  this  point  has  momentum  lying in the  plane. If the  two 
incident  streams  mix  instantaneously  on  impact,  the  resultant  momentum  must  also lie in the  
same pla.ne. As the fluid  flows along  the  shell,  it  continues to incorporate  momentum  contributions 
lying  in the  same  plane.  The collision of radial  winds  ema,nating  from  two  point  sources  gives  the 
same  result.  Thus, given t h e  perfect  mixing  asumption,  the flow within  the  shell will lie  along 
planes, a situation we  refer to as meridional flow. If the  shocked fluid does  not  mix,  the fluid 
trajectories in the shell are  not  confined to  a plane,  and  further  work  is  needed to  solve  this  more 
complicated  problem.2 

The  ensuing  geometric  simplification  allowed  Bandiera to construct a two-dimensional 
grid,  consisting of neighboring  trajectories  within  the shell at a set of azimuthal  angles.  His 
computational  method  was to integrate  the PDEs for  mass,  normal  momentum,  and  tangential 
momentum,  by  marching  along  the  trajectories  within  the  shell as if the  equations  were  ODES. 

'Jn t,he case of axisymmetric  problems wit,h shear, one may show that for divergent flow fields such as those 
encount,ered in bow shocks and colliding winds, the flow geometry and  the fluxes of mass, momentum and  angular 
momentum  are  the  same as for the mixed case  (Wilkin, Cant6  and  Raga 2000). 
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By differencing  neighboring  solutions,  numerical  values of the  cross-streamline  derivatives  were 
obtained  and  supplied t o   t h e  ODE integrator.  Provided  the  spacing of the  two-dimensional  grid  is 
sufficiently  fine,  his method will yield accurate  solutions.  Bandiera  postulated that the  dependence 
of the  equations  on  derivatives of quantities  across  streamlines  was  “fictitious,”  although  he  did 
not  succeed in eliminating  it  from  the  equations. 

In this  contribution,  the  solution  method will be simplified to an  integral  approach  that  avoids 
the need for PDEs, solving  purely  algebraic  equations.  Additionally,  the  solution  may  conveniently 
be  obtained in terms of ordinary  Cartesian,  cylindrical  polar, or spherical  polar  coordinates,  and 
does  not  require a coordinate  system  matching  the  shape of the  shell. 

2.3. The  Solution  Method 

The  solution  method  is  based  upon  the  observation  that  thin  shells  driven  by  hypersonic 
winds  are  momentum-conserving  in  the  vector  sense  (Paper I). In order to conserve  momentum 
in steady-state,  the  momentum  flux in the shell  must  be  the vector sum of the  two  incident 
momentum  fluxes,  integrated  from  the  standoff  point to the  point of interest.  Such  an  integration 
is  performed  over  the  area of the  shell  between  two  planes of constant  azimuthal  angle 4, in the 
limit that  their  separation A4 is  infinitesimal  (Fig. 1). For axisymmetric flow with  no  rotational 
motion  about  the  symmetry  axis,  no  mass or momentum  crosses  these  bounding  planes, so the 
mass  and  momentum flowing  within  such a wedge  must  exactly  equal  the  sum of the  mass or 
momentum  fluxes  onto  the  external  faces of the  bounding  surfaces  (shocks).  Given  the  known 
vector  momentum  flux,  one  may  determine  the  shape of the  shell,  since  the fluid must  move  in  the 
direction of its momentum.  While  this  description  is  complete,  the  mathematics  was  subsequently 
simplified  with the inclusion of an  additional,  angular  momentum  flux  integral  (Paper 11). In 
Papers 1 and 11, only  constant velocity,  isotropic  winds  were  considered. For such  winds,  the  vector 
momentum  flux  incident  onto  the  shocked shell is independent of the  detailed  shape of the  shell, 
so it  is  possible t o  specify  the  flux of momentum  onto  the  shell  from  each  side  analytically.  The 
methods of Papers I and I1 will now  be  extended to non-axisymmetric  bow  shocks  and  colliding 
winds,  provided the flow is  meridional. For meridional  flow, the  bounding  surfaces  are  again  planes 
of constant 4 ,  allowing us  to  integrate  the  external  fluxes  and  determine  the  internal  fluxes  within 
the shell.  For  anisotropic,  radial,  constant  velocity  winds,  such as those  considered  by  Bandiera, 
the  momentum  flux will depend  only  upon  the  number of  streamlines  intersected,  and we will be 
able  to  obtain  solutions  analytically. 

Proceeding  with  the  solution  method, we note  the  location of the  stagnation  point,  where 
the  two  strea,ms collide  head-on. For the two-wind  collision,  this  point  lies  between  the  two  stars, 
along  the  line  connecting  their  centers. For the  bow  shock  due  to a wind-blowing s t a r  moving 
with  respect to the  ambient  medium,  it  will lie on  the  stellar  trajectory, in the  direction of stellar 
motion. For either  problem,  the  z-coordinate  axis is  chosen to contain  the  stagnation  point at 
0 = 0, with  the  coordinate  origin at the wind  source  (Fig. 1). In what follows, the  wind  from 
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the  coordinate  origin will be referred to as “the  wind”, while the “second  wind”  may  be  either a 
radial  wind  from a second  point  source, or the  ambient  medium in the  frame of the  moving star,  
where  the  ambient  velocity  is V, = -V, z .  However,  we will show  explicit  formulas  only  for  the 
bow  shock,  reserving  detailed  treatment of the  binary  star colliding  winds  for a future  paper.  One 
should  bear in mind  that  the  methods  shown below will be  applicable as well for  that  problem. 
Returning to the  description of a thin slice of the shell  bounded  by  planes of constant 4, the  mass, 
momentum,  and  angular  momentum  flux  functions  per  unit  azimuthal  angle  are defined  by 

Here a = Rsin 0 is  the  cylindrical  radius,  a,nd  the  unit  vector at constant 4 tangent   to   the shell  is 
i = $ X n / l $  X n l ,  where n is  the  unit  outward  normal to the shell.  Noting that  the  arc  length 
element d s  traced  along  the shell is given  by ( d s ) 2  = ( d R ) 2  + R 2 ( d 0 ) 2  + R2 sin2 8 ( c @ ) ~ ,  the   arc  
length  element  traced  along  the  shell at constant 0 is a sec 7 d 4 ,  where  the  angle 7 is  given  by 

d R  
tan 7 = -/Rsin 0. 

34 

For example,  the flux of mass  crossing a surface of constant  polar  angle 0, between the  azimuthal 
angles 4 and 4 + d 4 ,  is (amd4.  If Ve is the  0-component of velocity  within  the  shell, a.nd  we write 
the cylindrical  components of the  momentum  flux  function as am and aZ,  then  these  components 
are  related  to  the  angular  momentum  flux  by 

+ ~ = R ( Q . , c o s 8 - ~ , s i n 0 ) $ .  (6) 

For meridional flow, the  angular  momentum  within  the shell will be in the  &direction, so for 
the  remainder of the discussion  we will only  need the  magnitude of the  angular  momentum  flux 
@ J  = < P J .  4. 

The  mass,  momentum,  and  angular  momentum flux  functions  due to the  incident  winds  are 
similarly  defined. For the  first  wind,  located at the  coordinate  origin,  these  are  given  in  terms of 
the  wind  density p, and  velocity V, as 
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The area of integration is tha t  between  two  planes of constant 4,  from  the  standoff  point to  polar 
angle 0, following the  shape of the collision surface,  which is determined  along the  course of the  
integrations.  The sign of the  normal  direction is chosen so as to point  away  from  the  origin.  The 
flux  functions  for  the  ambient  medium  are  strictly  analogous,  except  the  unit  vector  normal to the 
collision surface  would  be in the  reverse  direction: 

a a A 4  = - J J p a ( v a  . n > v a  d ~ ,  (11) 

+ J , , A ~  = - J J Pa(Va . n )  (R x v a )  d ~ .  (12) 

If R(O,#) is the  radius of the shell, and its partial  derivatives  are RQ and R4, the  surface  area 
element is 

dA = d R 2  + Ri + RZ csc2 0 R sin 0 d0d4.  (13) 

The uni t  outward  normal n to the  surface is given by 

Combining  these, 
n d A  = (Ri.  - R80 - R4 C S C O J )  R sinOdOd4. (15) 

For a radial  wind, t he  partial  derivatives  with  respect  to 0 and 4 do  not  enter t he  expression  for 
V, . n dA, which is simply 

V w - n d A = V , R 2 s i n O d O d ~ .  (16) 

Similarly, for the  ambient  medium Va = -Va z = -Va(rcos 0 - d sin e), so noting  that 
dwldd  = R cos 0 + RQ sin 0, we have 

This  eliminates  some of the  partial  derivatives  that  complicated  Bandiera's  very  general  treatment 
of t h e  geometry.  The  rate at which  conserved  quantities  are  advected onto the shell  does  not 
depend  upon  the  detailed  description of the shell, provided  we  ensure  the  correct  number of 
streamlines is counted.  Using  eq.(16),  the  resulting  forms of eqs.(7-9) for the  radial  stellar  wind 
are 

8 
a,,, = I R2 pw V, sin 0' do', (18) 

8 
R2 pw V: [ W  sin 0' + cos 0'1 sin 0' do', 
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Here  the  radial  unit  vector  has  been  written in terms of its  cylindrical  polar  components,  and  the 
integrations  are  performed at constant 4. Because  the  stellar  wind  is  radial, it imparts  no  angular 
momentum to the shell,  and  the  wind  angular  momentum  flux  vanishes.  Using  eq.(17) t o  simplify 
eqs.(10-12) for the  ambient  medium, 

The mass  conservation  law  for  the  pre-shock  radial  wind  in  steady-state  is 

dr  (rzPwvw) = 0. 

Consequently, if the  wind  is of mass loss rate M w  and  streamline-average  speed V , ,  its properties 
are given  by 

M w  
P*VW = Gflh (64)  , (25) 

g,(8', 4) [a sin 6' + Z cos 8'1 sin 8' dB'. 

In order to obtain  steady-state  solutions,  the  ambient  density  must  be  independent of the 
z-coordinate,  although its dependence  on  the  remaining a, 4 coordinates  may  be  arbitrary.  Thus, 
we assume  an  ambient  density of the  form 

where p o  is  the  value of the  ambient  density a.long the  stellar  trajectory  and f (O ,+)  = 1.  The final 
forms of the  ambient  flux  functions  are  thus 

r w  
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The  mass,  momentum,  and  angular  momentum flux  functions  for  both  the  wind  and  ambient 
medium  are  clearly  streamline  integrals  that  do  not  depend  upon  the  detailed  shape of the shell - 
the  integration is essentially  one  over  the solid angle of t h e  A$ wedge, as seen  by the origin.  This 
is a consequence of the  fact   that   the pre-shock  media  conserve  these  quantities in steady-state. 

Suppose  we  have  performed  the  integrations  for  the  mass,  momentum,  and  angular  momentum 
onto the narrow slice of the  shell,  for  both  incident  winds,  according to eqs.(20,27,28,30-32).  In 
steady-state,  these  quantities  do  not  accumulate at any  location  within  the  shell,  but  are  carried 
away by the flow within  the  layer.  The  conservation  laws of mass,  momentum,  and  angular 
momentum  take  the  form 

@ m  = @ m , w  + @ m , a ,  ( 3 3 )  

@ = @ w + @ a ,  (34) 

@ J  = @J,w + @J,a-  ( 3 5 )  

Now we may  describe  the  properties of the shell  explicitly  in terms of those of the  external  winds. 
Equation (6) yields the  shell  radius 

@ J  

@, cos 0 - Q Z  sin 8 '  
R =  ( 3 6 )  

This  equation  combines  the  formulation of Paper 11, which  was  in  terms of azimuthally  integrated 
fluxes,  with  the  original  treatment of Paper I ,  using  fluxes  in an infinitesimally  thin  wedge. In 
eq.(36),  each  momentum  flux  function  within  the  shell  is  to  be  evaluated as the  sum of appropriate 
source  terms,  using  the  conservation  laws  (eqs.[34,35]). I t  is t o  be  stressed that if the flow is 
not  meridional,  eq.(5)  does  not  hold,  and  the  solution  method  is  considerably  more  complicated. 
However,  eqs.(6,36)  are still valid provided the  angular  momentum  flux  is  replaced  by  its 4 
component.  From  eqs.(l,2),  the  tangential  velocity of mat ter  in the  shell  is 

K t  = +€+Dm, (37)  

while the  mass  surface  density in the  shell  is  given by 

2.4. The  Applied Torque Method  and  an  Example 



- 10 - 

Because  the  stellar  wind  has  uniform  speed, we have  replaced V, with V,. One  could  immediately 
substitute  these  results  into  eq.(36)  to  determine  the  shell's  sha,pe.  However,  before  proceeding 
t o  apply  the  formalism,  note  that  the  equation  for  the  shape of the  shell  depends  upon  a  specific 
combination of three flux functions in eq.(36).  One  may  divide  the  equation  into  two  parts,  one 
part for each  wind,  according  to 

and k = PD or a for the wind  and  ambient (or second  wind)  sources.  Physically, 7 represents  the 
applied  torque  necessary to compress  the  fan of streamlines  between  the  stagnation  point  and 
position R(0,d)  i n to  a unidirectional  beam  possessing  the  same  momentum  flux  (we  shall  call 
7 the  required torque). This is clearly  seen by considering  the  radial  wind  from  the  coordinate 
origin. I t  has  no  angular  momentum,  but  an  equivalent  beam  containing  the  same  momentum 
flux,  located a t  a specific  point R(B,4) does  indeed  have anguhr  momentum  about  the  origin, 
because  the  beam will not  be  radial.  The  required  torque  for  the  isotropic  wind follows from 
eqs.  (20,40,44): 

M w  Vw m 7, = - 
87r 

(1 - €9 cot e>. (45) 

Using  eqs.(41-44),  the  torque  necessary  to  compress  the  ambient  streamlines  to a unidirectional 
beam is 

For the  ambient  medium,  the  required  torque  expression  simplifies  because  the  a,mbient  medium 
has  no  cylindrical radia.1 momentum,  and its z-momentum flux is related  to  its  mass  flux by 
eq.(31), so in general, 

7, = w v a   @ m , a  - @ J , a .  (47) 

Similarly, the  radial  wind's  required  torque is simplified  due t o  its lack of angular  momentum 
about  the  origin. 

The  solution  surface is now defined  by 

7 - , + 7 , = 0 .  
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The  interpretation of eq.(48)  is that  each  wind  supplies  the  torque  necessary to compress  the  other 
wind.  These  torques  are  equal  and  opposite  only if the  correct  value of the  radius (or cylindrical 
radius w )  is used, conserving  angular  momentum as well as linear  momentum.  The  utility of this 
approach is tha t  if we  vary  the  properties of one of the  winds,  holding  the  other  constant,  the 
shape of the shell is affected  only  by the  change in the  applied  torque  from  the  second  wind. 

Now the applied  torque  expressions  for  the  wind (eq.[45]) and  the  ambient  medium  (eq.[46]), 
when  substituted  into  eq.(48),  quickly  recover  the  solution of Paper I ,  

R(0) = RocscHJ3(1 - OcotO), 

where Ro is  the  standoff  radius: 

Ro = ,/ M w  vw 
41rpav,2 * 

3. Solutions for Bow Shock with Ambient Density Gradient 

In this  section we  assume  the  asymmetry of the  bow  shock to be due to  a density  gradient  in 
the  ambient  medium, while the  the  stellar  wind is assumed to   be  isotropic.  The  next  section will 
treat  bow  shocks  from  anisotropic  winds. 

The  mass  and  momentum  contributions of the  stellar  wind to the  shell are given  by 
eqs.(39,40,20),  and  its  required  torque is given  by  eq.(45).  The  ambient  medium is assumed to  
have a plane-parallel  density  stratification, so in eq.(29), we replace fa(a, 4)  simply  by f a ( x ) ,  with 
f a  is  normalized so tha t  f a ( 0 )  = 1, and  where 

x = wcosq5. (51) 

The  integrated  mass  and  angular  momentum f l u s  onto  the  wedge  from  the  ambient  medium  are 
W 

@‘m,a = ,&Va fa(w’ cos 4 )  w’dw’. 

A complete  description of the  bow  shock is  now  obtained  by  adding  the  contributions of both  the 
wind  and  ambient  medium  using  the  conservation  laws (eqs.[33-351). 

3.1. Solution for Exponential  Density Law 

We first  obtain  the  solution  for  an  exponential  distribution of ambient  density.  Let  the  density 
scale  height  be H .  Define  for  brevity  the  coordinate  y = x / H ,  so the  density  law is 
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and  the  mass  and  angular  momentum flux integrals  are 

Q m , a  = H ~ P O V , ~ ~ ~ ~  4 [ I -  ~ x P ( - Y ) ( ~  + Y)], (55) 

Q J , ,  = ~ ~ p ~ ~ 2  sec3 4 [a - exp(-y)(y2 + 2y + a)].  (56) 

The  ambient  momentum  flux follows from  eq.(31),  while  the  required  torque follows from  eq.(47), 

7, = H3p0V2 sec3 4 y - 2 + exp(-y)(y + 2)]. [ (57) 

which  yields 

Using  this  torque 
by eq.(48), which 

Here I = H/Ro is 

formula  a,nd tha t  for  the  stellar wind  given  by eq.(45),  the shell’s shape is given 
yields upon  simplification 

1 
Z 2 s e c 2 ~ y - l [ y - 2 + e x p ( - y ) ( y + 2 ) 1 =  - ( l -ecote) .  2 (58) 

the  density  scale  height in units of the  standoff  radius.  Letting  yax  be  the  value 
of y = z/H appropriate  for  the  axisymmetric  solution of eq.(49), 

This  formula  may 
eq.(60),  the shell’s 

Y a x  - - H cos+ Jw, 
eq.(58)  takes  the  simple  form 

(59) 

be  solved  numerically  for  y(0, +), so letting ys denote  the  solution for y t o  
shape is  given  by 

The  result is a family of bow  shock  solutions  distinguished  by  the  value of the  nondimensional 
parameter 1.  By  examining  eq.(60)  we  may  deduce  several  properties of the  solution. The left-hand 
side of the  equation is monotonically  increasing a,s a function of y. The  signs of y and ya, must  be 
the  same,  since it is due to the cos4  factor, so it follows tha t  y increases  monotonically,  although 
in a  very  non-linear  fashion, a,s a function of yaz. Because  the  parameter 1 does  not  enter  eq.(60), 
we see that  there is one  universal  solution  for  the  problem,  although  this  solution is scaled  by the 
value of Ro and  stretched  (distorted)  depending  upon  the  value of H/Ro. The  solution for the 
radius at all angles 0 ’ 4  and  for all values of I follows from  Fig. 2. In particular,  as y + 00, the  left 
hand  side of eq.(60)  approaches  unity,  implying a breakout  angle  for  the shell  when yaz = &, 
which  yields 

1 - e, cot 8, = 2 z 2  sec2 4.  (62) 

The  opening  angle 0, depends  upon  COS^, and  applies  only t o   c o s 4  2 0. In the  tail of the bow 
shock,  for cos4 < 0, we have y ”+ -00. In this  case, y depends  logarithmically  upon yaz. The 
most  interesting  part of the  solution,  for IyI 5 1 may  be  described  by  an  expansion in terms of 
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small y,,. Noting  that  for cos4 = 0 the  solution  is  identical to t h a t  of eq.(49), we  anticipate  that 
an  expansion  for  small cos 4 corresponds t o   a n  expansion  in  terms of small yaz about  the  standard 
bow  shock  solution.  Letting R,, be  the  value of R(8) for that  solution  (given  by  eq.[49]),  we  obtain 

The  behavior of the  solution  near  the  stagnation  point  is given  by 

R = R o  [ 1 + - 6 + ( % +  cyl+ 1 13cos2 160 l 2  4 

Unlike the  axisymmetric  bow  shock,  there  is a linear  term in the  behavior  near  the  standoff  point, 
so i t  is not  describable as parabolic  with  the z coordinate  axis as the  axis of a parabola,  except 
for  the  special  angles 4 = rr/2 or 3 ~ 1 2 .  As a consistency  check,  note  that as the  scale  height 
increases  relative to the  standoff  radius ( I  = H / R o  + o o ) ,  t h e  solution  reduces to the  standard 
axisymmetric  bow  shock  (Paper I). The  lowest  order effect near  the  standoff  point is a tilt of 
the bow  shock  head,  described  by  the  linear  term  in 6 .  This  means  that  although  the  wind  and 
ambient  streamlines  meet  head-on at the  standoff  point,  they  are  not  normal to  the  shell at this 
location,  quite  different  from  the  axisymmetric  case.  This effect is  due to the  instantaneous  mixing 
we have  assumed. If shear  is  present in the shell, the   two colliding  flows  could  have  separate 
stagnation  points,  which  would be located  where  the  incident  stream  is  indeed  normal to the shell. 
These  bow  shock  solutions differ from  the  standard  model  (Baranov,  Krasnobaev & Kulikovskii 
1971) in that  the  exponential  ambient  density  distribution  implies a finite  total  mass  on  one  side 
of the bow  shock.  The  solution  then  more  closely  resembles  those of two-wind  collisions  (Paper 11) 
where  there is a finite  opening  angle  for  the  bow  shock  tail.  Similar  problems  include  blast  waves 
in  finite  mass  media  (Koo & McKee  1990)  and  wind  breakout  from a stratified  medium  (Cant6 
1980;  Borkowski,  Blondin & Harrington  1997).  For  the high  density  region, c o s 4  < 0, the shell's 
asymptotic  shape in the  tail region  is 

z M --wsec24 212 exp(--cos4). W 

rr H 

The shell  continues to  be  more  distorted as i t  expands  due to  the  exp(-y)  factor.  Because  the 
shell has a finite  opening  angle  on  one  side,  not  all  wind  streamlines  intersect  the  shell,  but  those 
with 19 > d m ( 4 )  freely  expand  to infinity. Further  consequences of the  finite  opening  angle of the 
shell  are  discussed  in 55. 

3.2. Solution for Linear or Polynomial  Density Law 

Consider a stratification of the  ambient  medium  according to  

f,(z) = 1 + a12 + u2z + .... 2 
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Of  course,  one  must  ensure  that  this  expression is non-negative  over  the  domain of interest.  The 
fluxes of mass  and  angular  momentum  onto  the shell are 

= w2poVa - + -2 + -2  + ... , 

@J,. = w3pov2 - + --2 + --IC + ... . 

[1 a 2 2  4 1 
[2 : a 2 2  5 I 

The  ambient  momentum  flux follows  from  eq.(31),  while  the  required  torque  follows  from  eq.(47), 
giving  the  result 

w3 a1 3 2 6(n + l)! 7, = -pov,2 1 + -2  + - -a22  + ... + 
6 [ 2 10 (n  + 3 ) !  

a,zn + ... . 1 
Substitution  into  eq.(48),  we  obtain  upon  simplification 

- l + - m c o s + + - w z c o s z + +  ... = 3 ( 1 - 0 c o t 0 )  "'[ : R; 10 1 3 a2 

Restricting  the  treatment to a linear  density  gradient,  with  only a1 non-zero,  this  equation  is 
cubic  in the  variable w. One  may  solve  analytically  or  numerically  for  the  function m(l9,+), so the  
solution  surface is then given  by R(l9,4) = z;.(@,+) cscl9. Inclusion of higher  order  terms  in  the 
density  law  simply  increases  the  degree of the  polynomial,  but  the  solution is  obtained in the  same 
way. 

The  behavior of the  solution  near  the  stagnation  point  is given  by 

R a1 Ro COS + 1 5  3 
RO 4 5 32  20 
- = I -  - + (-a? - --a2)R;Cos2 4 

As a consistency  check of the  solutions,  for  the  case of a uniform  ambient  medium ( a l ,  a2, ... = 0), 
eqs.(70,71)  reduce to  the  standard  solution of Paper I. As a  further  check,  note  that  this 
result is consistent  with  the  solution  for  an  exponential  mass  distribution, if we choose 
the  coefficients  corresponding to  the  exponential  distribution of the  previous  subsection, 
a1 = -l/H, a2 = 1/2H2,  ..., recovering  eq.(64). 

4. Treatment of Anisotropic  Winds 

4.1. The  Axisymmetric  Wind 

We  now  relax the  assumption  that  the  wind is isotropic to permit  an  axisymmetric  wind, 
where  the  axis of symmetry  is  misaligned  with  the  direction of stellar  motion,  or  in  the  case of a 
two-wind collision  in a binary  star,  where  the  axis  does  not  point  to  the  other  star.  Treatment of 
the  accelerated  wind will be  deferred t o  a future  contribution; in this  paper  the  wind is  assumed 
to be coasting.  The  coordina.te  axes  are  chosen so tha t   the  z-direction  points  in  the  direction of 
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stellar  motion,  or  towards  the  second  star. In terms of a spherical  coordinate  system,  where  the 
azimuthal  angle 4 is  measured  about  the  z-axis,  motion of the shocked  fluid  in the  shell  is  along 
planes of constant 4. We  also  define  starred  coordinates so tha t   the  .z,-axis is the  symmetry  axis 
of the  stellar  wind.  The  two  coordinate  systems  are  related  by 

sin 8, cos 4, = sin 8 cos 4, 
sin 8, sin 4, = sin 8 sin 4 cos X - cos 8 sin X ,  

cos 8, = sin 8 sin q5 sin X + cos 8 cos X.  

The wind  mass  and  momentum  flux  densities  depend  on  the  polar  angle 8,: 

The  nondimensional  functions f, and gw are  normalized  to  have  unit  average  value  over 4rr 
steradians. 

The  incident  fluxes of mass,  momentum,  and  angular  momentum  from  the  wind  onto  the  shell 
are 

where  the  nondimensional  functions F, and G, = G,,* w + Gw,z 2 are given  by 

e 
F, = 1 f w  sin 8'd8', 

e 
G, = S, g, [a sin 8' + z cos 0'1 sin 8'dB'. 

Here f, and gw have  argument 8,(8', 4), so the  integrations  are  performed  using  the  transformation 
eqs.(72-74) to evaluate 8,(8,4). We also  define a nondimensional  function T, associated  with  the 
required  torque 7, to compress  the  wind  streamlines  according  to 

Ai?, v, 
7, = 7 a T,. 

Because  the  wind's  angular  momentum  flux  vanishes,  eq.(44)  implies  that 
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The functions f ,  (e,), g,(8,) may now be  expanded in terms of powers of cos 8,, 

i=O 

m 

gw(O,) = c; cosi 0,. 
i=O 

Defining  for  brevity 
p = sin +sin X ,  (85) 

q = cos X ,  (86) 

the  transformation given  by  eq.(74) is cos 8* = psin 8 + q cos8.  Denoting  the  trigonometric 
integrals  by 

0 .  
Ij,k = sinJ 8’ cosk 0‘d8’, 

we  evaluate F, and G, using the  above  series,  and  bringing p and q outside of the  integrals, we 
finally  have 

m i  

G, = c; pi-j q j  (J) [a Iz+i-j,j + i I1+i-j,l+j]. (89) 
i=O j = O  

Here we have  used the  binomial  coefficients to write  the  sums. The applied  torque  necessary to 
compress  the wind  streamlines to a t h i n  shell, in nondimensional  form, is now 

M 

i=O 

where  the  responses  due to  the  individual c0si8, terms a.re  given  by 

4.2. General  Solution for Bow Shock Driven  by  an  Axisymmetric, Misaligned  Wind 

The wind  description of the  previous  subsection  may  now  be  applied to   t he  problem of a bow 
shock  driven by an  anisotropic  wind.  The wind is assumed to be  driven  by a s tar  moving a t  speed 
V, in a medium of uniform  density p a .  We describe the  bow  shock’s  properties in the  frame of the  
star.  
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The standoff  radius,  defined as the  shell  radius a t  0 = 0, which  corresponds to 6 ,  = X,  is given 

b s  

We  also  define RO to  be the  standoff  radius  for  the  equivalent  isotropic  wind 

I t  is important  to recall for  the  results below that  the  standoff  radius will be R o d m ,  where 

03 

gw(X) = c; cosi X.  (94) 
i=O 

By  eqs.(46,48,82), t he  solution  for  the shell’s radius is 

where T, is given  by  eqs.(90,91).  The  total  mass  and  momentum  fluxes,  including the  contribution 
from the  ambient  medium,  are 

where w = w/Ro, and = V,/V,. 

To obtain a complete  description of the  bow  shock’s  properties, we must  specify  the  velocity 
of material in the  shell and  the  mass  surface  density of matter.   The velocity is given  by the  ratio 
of the  mass  and  momentum  fluxes: 

K i  = V, [2 G,,m .Ij + (2 G,,, - w2)  Z] 
[2 (Y F, + 6 2 1  

The  surface  density is given  by eq.(38), which  yields 

[2 aF, + a2I2 
0 = P a &  cos 7. 

2 ~ [4 G$,m + (2 G,,, - 62)2] 

In order to evaluate u,  we need t o  know the  angle 7. Using  eqs.(4,95),  we  have 

1 1 8T, 
t a n q =  -cscO-- 

2 T, 8 4 ’  

(99) 

where  differentiation of eqs.(90,91)  with  respect to 4,  which enters  only in the  variable p ,  yields 
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Note  that  the  summation  limits  are  restricted so that   the  terms  with j = i vanish,  including  the 
co term. 

In the  region of the  standoff  point,  an  expansion t o  second  order  in 8 gives 

Primes  on  the  function gw represent  differentiation  with  respect to q = cosX. As was  the  case 
of asymmetry  resulting  from  an  ambient  density  gradient,  there  is a 8’ term  indicating a tilt of 
the  standoff region  relative to the  location of the  stellar  motion.  The  mass  and  momentum  flux 
functions  near  the  standoff  point  are 

Equations  (4,28,29)  now  give  the  tangential  velocity in the shell  and  the  ma,ss  per  unit  area as 

and 

One  may  readily  see  that  these  solutions  reduce to the  results of Paper I for  an  isotropic  wind 

( f w  = gw = 1). 

4.3. Simple  Solutions:  Quadratic  Dependence on case, 

The  simplest  non-trivial  solution  is  for a linear  dependence of mass  and  momentum  fluxes 
upon  cos@,.  However, in astrophysical  applications  one  is  frequently  concerned  with  stellar  winds 
t h a t  have  symmetry  with  respect to the  equatorial  plane,  such as when  the  asymmetry  arises 
due  to   rotat ion of the  star. For winds  that  are  symmetric  with  respect to 0 = 7r/2, the  functions 
fw(e , ) ,  gw(e,)  will have  expansions  in  terms of even  powers of cos e+ only. Thus,  we  shall give the 
solution  for a wind that  depends  upon  cos2 O+.  This is  sufficiently  general t o  include as a subset 
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previous  models of non-axisymmetric  bow  shocks  (Bandiera  1993;  Chen & Huang  1997). We 
assume  the  mass  and  momentum  fluxes  are  described  by 

g ,  == CO + c1 COS 8, + C Z  COS’ 8,, 

where  the  normalization  requires bo = (1 - b 2 / 3 )  and co = (1 - c2/3). 

The  mass  flux  integral I?, is 

bb (1 - p )  + -[p (8 - sin Bcos8) + qsin28] b l  
2 

+- sin2@ [ ( q 2  - p 2 )  cos8 + 2pqsin 191 , b2 

3 I 
where bb = bo + b2(2p2 + q2)/3. The  components of G, are 

1 
2pq sin 8 + ( q 2  - p 2 )  cos 8 , 11 

cb(1 - cos28) + 4psin38 + q (4 - 3cos8 - cos38) 
3 1 

2 (‘ - ”) (2 + cos 28)  sin 
2  (112) 

Here  the coefficient cb = co + c2(3p2 + q2)/4 depends  on 4 and X.  Using  eqs.(82,111,112) we obtain 

- Bcot8) - -(1- C1 cos8)[q+ptan(-)]  8 
3 2 

( p 2  - q 2 )  sin2 8 - pq(28 - sin  28) I 11 
Using  eq.(95),  with T, given by eq.(113), we obtain  the shell’s shape 

3(1 - 8cot  8)(co + c2(3p2 + 4’)) 
4 

8 
2 

+2c1(1-  cos 8) [q + p tan(  -)] 

+-- [ (q2  3 c2 - p2) sin2 8 + pq(28 - sin  28)] (114) 

where  the  explicit  dependence  upon  stellar  inclination  and  azimuthal  angle  is  obtained  using 
p = sin +sin X and q = cos X.  Examples  are  shown in  Figures 3-5 for even  parity  winds  with 
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~2 = 3,1.5,  and -1.5. Noting  that  Bandiera's  notation  for  this  problem  was A y  = -2c2/3, these 
correspond to his  cases of A y  = -2, -1 and +l. 

In the  neighborhood of the  standoff  point,  the shell's shape is given by 

4.4. The  Non-Axisymmetric Wind 

The  previous  formulation  is  not  restricted  to  an  axisymmetric  wind, so one  may  obtain 
solutions  for  bow  shocks  driven  by  radial,  non-axisymmetric  winds,  by  defining  the  momentum 
flux  from  the wind  in terms of spherical  harmonics.  Because  the  method  is  clear  from  the  previous 
discussion of an  axisymmetric  wind, we will not give further  details  here. We note  only  that  the 
response  from  each  spherical  harmonic  contribution t o   t h e  wind  momentum  flux  may be obtained 
from  the  required  torque  formula.  Then  the  shape of the shell will depend  upon  the  square  root of 
the  sum of these  responses. 

5. Energy  Thermalization Rates 

The  energy  thermalization  rate of axisymmetric  bow  shocks  and  colliding  winds  has  been 
considered  by  Wilkin, Cant6 k Raga (2000). The  thermalization  occurs in the  shocks,  post-shock 
(radiative)  relaxation,  and  mixing.  The  maximum  possible  rate of thermalization is given  by the 
total  incident  kinetic  energy  flux  in  the  center of mass  frame.  Here  we  are  concerned  with  the 
total  ra.te of energy  thermalized,  over  the  entire  shell,  rather  than  the  amount  per  unit  area. By 
center of mass,  we  mean  the  center of mass of the  matter  deposited  onto  the shell  per  unit  time. 
This  maximum  thermalization  rate is for  the  case of complete  mixing. For the  bow  shock in a 
uniform  ambient  medium,  the  center of mass  frame  corresponds to the  ambient  frame,  because a 
formally  infinite  amount of ambient ma,ss  per  unit  time  strikes  the  shell, while the  stellar  wind 
has  finite  mass  loss  rate. For the  bow  shock  driven  by a star  with a radial  wind,  the  total  energy 
thermalization  rate is given  by 

Here  primes  indicate  velocities  in  the  ambient  frame, so Vk = V, i + V, z ,  giving 

Vh2 = [V: + 2V,V, cos 0 + V . ] .  

T h e  velocity of the shell  is its  pattern  speed  and  corresponds to the  stellar  velocity V, = V, z .  

Because  we are  assuming a non-accelerating  wind,  the  integral  depends  only  upon  the  streamlines 
and  not  the  detailed  shape of the  shell, so we may  perform  the  integration  over a spherical  surface. 
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For the case of an  isotropic  wind  from a s tar  moving  through a plane-parallel  stratified  ambient 
medium,  the  rate of energy  thermalization  is  precisely  the  same as for a uniform  medium  (Wilkin, 
Cant6,  & Raga 1997), since  it  is  the  kinetic  energy  in  the  ambient  frame  that is  thermalized: 

This  rate of energy  thermalization  is  appropriate  for  an  arbitrary  ambient  distribution of matter,  
provided  only that   i t  is truly  infinite  in  mass,  and  that  the  bow  shock  is  steady-state in the  star's 
frame.  The  second  requirement  demands  that  the  ambient  mass  distribution  be  independent of 
the  z-coordinate,  although  its (m,  4) distribution is arbitrary.  An  exception,  for  example, is the 
case of an  exponential  stratification,  for  which case the  total  ambient  mass  flux  may  be  finite  (on 
one  side of the  bow  shock). For this case, the  center of mass  frame is not  equal to  the  ambient 
frame,  and it is  important to separately  define  the  center of mass  frame  for  each 4 slice, as it will 
depend  upon  azimuthal  angle  for  the  portion of the bow  shock  that  contains  finite  opening  angle. 
Because of the  resulting  opening  angle,  not  all of the  stellar  wind  kinetic  energy  (in  the  ambient 
frame) will be thermalized,  for  two  reasons: (1) some  streamlines  miss  the  shell,  and  (2)  there  is 
a net flow of momentum  along  the shell  even at infinite  distance,  whereas  for  the  standard  bow 
shock V, + 0 in the  ambient  frame,  far in the bow  shock tail. 

We  now  consider  the  case of an  anisotropic  wind,  to  determine  whether  the  energy 
thermaliza.tion  rate  depends  on  the  orientation of the  wind.  However,  the  thermalization  rate 
remains  independent of the  stratification of the  ambient  medium,  subject to  the  caveat  about 
finite-mass  systems. For the  remainder of this  section,  we  allow  the  wind to  be  non-axisymmetric, 
so in  equations (75,76) we  use f ,  = f w ( d + ,  ++),  g, = gw(8+, &). When  we refer to  an  axisymmetric 
wind, its axis of symmetry will be 8, = 0 as before. 

The  total  kinetic  energy  loss  rate of the wind  is 

The  functions f w  and g, are  assumed to  have  unit  average  over 47r steradians. In terms of this 
energy  loss  rate, we define the  mean  square  wind  speed as 

< v,2 > = 2 E , / i z I , .  

We also  define a total vector  momentum  flux  for  the  wind, a quant i ty   that  is non-vanishing  only if 
the  wind  is  not  point-symmetric  with  respect to the  origin 

P, = ___ ni,vw i2" s," g ,  .i. sin $dB d$, 
47T 
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We  now  wish to calculate  the  kinetic  energy  deposition  rate  to  the shell in the  ambient  frame. 
Letting Q = V,/V,, the  wind  velocity  (squared) in the  ambient  frame  becomes 

The  wind  density is given  by 

The  total  kinetic  energy  flux  onto  the  shell in the  ambient  frame  is 

The  normalization  condition for f permits  the  last   term  to  be easily  integrated.  The  second  term 
is V, times  the z component of the wind  momentum  flux.  In  terms of the  total  wind  kinetic  energy 
flux and  momentum  flux, we  have 

We  see  that a, sufficient  condition  for the  total  thermalization  rate to be  independent of 
the wind  orientation  is  the  vanishing of P,:,. Because  we do  not wish to invoke a special 
alignment of the wind  orientation  with  the  star's  direction of motion,  more  typically  this  requires 
a point-symmetric  wind  such  that P, = 0. As a special  case,  this  can  be  more  explicitly 
confirmed  for  the  axisymmetric  wind,  assuming i t  is symmetric  with  respect to its  midplane 
0, = r/2. Because  we are  considering  the  total  thermalization  rate, we may  perform  the solid 
angle  integration  in  starred  coordinates. In this  case, we  need  only the  transformation  equa.tion 
for  cos0  which  is  given  by  eq.(74). We assume  the  wind  to  be  axisymmetric  and  symmetric  with 
respect t o  0* = r / 2 ,  so it  has  an  expansion in  cos0,  with  only  even  powers.  This  implies  that  the 
2acos  0 term in the  integral will give  no  contribution,  by  parity,  because  it  yields  only a sin +* 

term, which  vanishes  in  the  azimuthal  integration  and  terms  with  odd  powers of  COS^,, which 
vanish  in the  polar  angle  integration.  The  remaining  contribution is then 

The  total  energy  thermalization  rate  is  independent of the  orientation of the  midplane-symmetric, 
axisymmetric  wind. For the  case of a non-point-symmetric  wind,  including  an  axisymmetric  wind 
that  doesn't  possess  mirror  symmetry  with  respect  to  the  equator,  the  total  thermalization  rate 
will depend  upon  the  stellar  orientation  because of the  contribution  from  the 2 ~ c o s 0  term.  This 
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is the  case of the  exa,mple  solution  given  in  Section 4.3, for  the  wind  with  quadratic  dependence 
on cos2 6, .  For that  wind,  the total vector  momentum loss rate is 

M, v, P, = ~ c1 z * ,  3 

where 2, points  in  the  direction of the  wind  symmetry  axis z*. The  thermalization  rate  for  the 
bow  shock  driven  by  this  wind  therefor  has a fluctuation  depending  on  orientation of the wind 
symmetry  axis  with  respect  to  the  stellar  velocity of magnitude 

If the  quadratic  term in the wind  momentum  vanishes (c2 = 0), then  the  absolute  value of c1 may 
not exceed  unity. The  amount  this  changes  the  total  thermalization  rate  then  depends  upon  the 
parameter (Y = V,/V,. 

We must  note  that  changing  orientation of the  point-symmetric  wind  did  not  change  the  total 
thermalization  rate,  but  the  spectrum of shock  emission will clearly be different. For example  the 
peak  post-shock  temperature will depend  upon  the  incident  normal  component of velocity. The  
sum of thermalization  by  shock,  relaxation,  and  mixing  is  independent of orientation,  but  the 
individual  contributions will vary. This  highlights  the  fact  that  the  properties of bow  shocks  due 
to non-axisymmetric  winds  may  be  determined  by  measuring  the  bow  shock  shape,  mass  surface 
density (or column  density),  kinematics,  and  radiated  energy.  Although  detailed  shock  calculations 
are  beyond  the  scope of this  work, a substantial  amount of information  should be obtainable  from 
these  global  quantities  and  may  be  sufficient  for  sources  where  the  data  are  sparse. 

6. Summary 

I have  shown  how to solve the  problem of non-axisymmetric  bow  shocks  and  wind  collisions 
with a simple  formalism  that  requires  only  algebraic  equations.  Most  often  one  considers  constant 
wind  speed for such  problems,  and  in  this case the  method  leads to exact,  analytic  (although 
possibly  implicit)  solutions.  The  availablility of simple  analytic  solutions  makes it much  easier 
to  model  observed  sources  and  derive  the  properties of the  driving  winds.  Among  the  principal 
applications of these  solutions  would  be to  determine  the  cause of the  asymmetry in observed  bow 
shocks,  whether  it  be  due to  the  ambient  medium or an  anisotropic  wind, or both. 

Future  improvements  are  needed to  include  non-radial  and  accelerating  winds  and  shearing 
motions  in  the  shell,  in  which case the  fluid  elements  are  not  restricted to  a plane.  Also, 
non-axisymmetric  bow  shocks  due to colliding  winds  in  binary  systems,  including  the  orbital 
motion,  require a formulation  in a non-inertial  frame. A forthcoming  paper will describe  how 
to solve the  general  problem of colliding  winds  from  two  stars,  including  both  anisotropy  and 
acceleration  in  the  winds. 
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Fig. 1.- Thin Shell Model  for a Stellar  Wind Bow Shock.  The  top  panel  defines  the  spherical 
coordinate  system  and  shows  a  thin  wedge cu t  by two  planes of constant 4,  while the  bottom  panel 
shows the wind,  ambient,  and  tangential flows in t he  frame of the  s tar .  

Fig. 2.- Solution of eq.(60):  Scaled  x-coordinate  versus  that of a bow  shock in a uniform  medium. 

Fig. 3.- Solution  surfaces for 1 = 3 (top)  and 1 = 1 (bottom).  Stars  mark  the  source of the  wind. 
The  ambient  density  increases  towards  the left of the  page,  and the  direction of stellar  motion is 
downwards.  The bow  shocks  are  viewed  from  an  angle of 10" by rotating  about  the x-axis.  Contours 
of constant 0 are at every 8" up to 120°,  while  contours of constant 4 are  at  every  10". 

Fig. 4.- Bow  Shock  for c2 = 3, a polar  wind. The wind is inclined with  respect to the  z-direction 
by  angles  (left  column,  from top  to  bottom)  0,10,30  degrees,  and  (right  column,  top to bottom) by 
50,70,  and 90 degrees. 

Fig. 5.- Bow  Shock  for c2 = 1.5, a polar  wind.  The  wind is inclined  by  angles  0,10,30,50,70,  and 
90 degrees  with  respect to the  z-direction  as in Figure 4. 

Fig. 6.- Bow  Shock  for c2 = -1.5,  an  equatorial  wind.  The wind is inclined  by  angles  0,10,30,50,70, 
and 90 degrees  with  respect to the  z-direction as in Figure 4. 
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